5,768 research outputs found

    Metric space analysis of systems immersed in a magnetic field

    Get PDF
    Understanding the behavior of quantum systems subject to magnetic fields is of fundamental importance and underpins quantum technologies. However, modeling these systems is a complex task, because of many-body interactions and because many-body approaches such as density functional theory get complicated by the presence of a vector potential into the system Hamiltonian. We use the metric space approach to quantum mechanics to study the effects of varying the magnetic vector potential on quantum systems. The application of this technique to model systems in the ground state provides insight into the fundamental mapping at the core of current density functional theory, which relates the many-body wavefunction, particle density and paramagnetic current density. We show that the role of the paramagnetic current density in this relationship becomes crucial when considering states with different magnetic quantum numbers, mm. Additionally, varying the magnetic field uncovers a richer complexity for the "band structure" present in ground state metric spaces, as compared to previous studies varying scalar potentials. The robust nature of the metric space approach is strengthened by demonstrating the gauge invariance of the related metric for the paramagnetic current density. We go beyond ground state properties and apply this approach to excited states. The results suggest that, under specific conditions, a universal behavior may exist for the relationships between the physical quantities defining the system

    Feasibility of approximating spatial and local entanglement in long-range interacting systems using the extended Hubbard model

    Full text link
    We investigate the extended Hubbard model as an approximation to the local and spatial entanglement of a one-dimensional chain of nanostructures where the particles interact via a long range interaction represented by a `soft' Coulomb potential. In the process we design a protocol to calculate the particle-particle spatial entanglement for the Hubbard model and show that, in striking contrast with the loss of spatial degrees of freedom, the predictions are reasonably accurate. We also compare results for the local entanglement with previous results found using a contact interaction (PRA, 81 (2010) 052321) and show that while the extended Hubbard model recovers a better agreement with the entanglement of a long-range interacting system, there remain realistic parameter regions where it fails to predict the quantitative and qualitative behaviour of the entanglement in the nanostructure system.Comment: 6 pages, 5 figures and 1 table; added results with correlated hopping term; accepted by EP

    Effect of matrix parameters on mesoporous matrix based quantum computation

    Full text link
    We present a solid state implementation of quantum computation, which improves previously proposed optically driven schemes. Our proposal is based on vertical arrays of quantum dots embedded in a mesoporous material which can be fabricated with present technology. We study the feasibility of performing quantum computation with different mesoporous matrices. We analyse which matrix materials ensure that each individual stack of quantum dots can be considered isolated from the rest of the ensemble-a key requirement of our scheme. This requirement is satisfied for all matrix materials for feasible structure parameters and GaN/AlN based quantum dots. We also show that one dimensional ensembles substantially improve performances, even of CdSe/CdS based quantum dots

    Entanglement distribution for a practical quantum-dot-based quantum processor architecture

    Get PDF
    We propose a quantum dot (QD) architecture for enabling universal quantum information processing. Quantum registers, consisting of arrays of vertically stacked self-assembled semiconductor QDs, are connected by chains of in-plane self-assembled dots. We propose an entanglement distributor, a device for producing and distributing maximally entangled qubits on demand, communicated through in-plane dot chains. This enables the transmission of entanglement to spatially separated register stacks, providing a resource for the realization of a sizeable quantum processor built from coupled register stacks of practical size. Our entanglement distributor could be integrated into many of the present proposals for self-assembled QD-based quantum computation (QC). Our device exploits the properties of simple, relatively short, spin-chains and does not require microcavities. Utilizing the properties of self-assembled QDs, after distribution the entanglement can be mapped into relatively long-lived spin qubits and purified, providing a flexible, distributed, off-line resource. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

    Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment

    Get PDF
    In this work we present the results of imaging simulations performed with the help of the GEANT4 package for the protoMIRAX hard X-ray balloon experiment. The instrumental background was simulated taking into account the various radiation components and their angular dependence, as well as a detailed mass model of the experiment. We modeled the meridian transits of the Crab Nebula and the Galatic Centre region during balloon flights in Brazil (∼−23∘\sim -23^{\circ} of latitude and an altitude of ∼40 \sim 40 \thinspace km) and introduced the correspondent spectra as inputs to the imaging simulations. We present images of the Crab and of three sources in the Galactic Centre region: 1E 1740.7-2942, GRS 1758-258 and GX 1+4. The results show that the protoMIRAX experiment is capable of making spectral and timing observations of bright hard X-ray sources as well as important imaging demonstrations that will contribute to the design of the MIRAX satellite mission.Comment: 9 figure

    The entanglement of few-particle systems when using the local-density approximation

    Full text link
    In this chapter we discuss methods to calculate the entanglement of a system using density-functional theory. We firstly introduce density-functional theory and the local-density approximation (LDA). We then discuss the concept of the `interacting LDA system'. This is characterised by an interacting many-body Hamiltonian which reproduces, uniquely and exactly, the ground state density obtained from the single-particle Kohn-Sham equations of density-functional theory when the local-density approximation is used. We motivate why this idea can be useful for appraising the local-density approximation in many-body physics particularly with regards to entanglement and related quantum information applications. Using an iterative scheme, we find the Hamiltonian characterising the interacting LDA system in relation to the test systems of Hooke's atom and helium-like atoms. The interacting LDA system ground state wavefunction is then used to calculate the spatial entanglement and the results are compared and contrasted with the exact entanglement for the two test systems. For Hooke's atom we also compare the entanglement to our previous estimates of an LDA entanglement. These were obtained using a combination of evolutionary algorithm and gradient descent, and using an LDA-based perturbative approach. We finally discuss if the position-space information entropy of the density---which can be obtained directly from the system density and hence easily from density-functional theory methods---can be considered as a proxy measure for the spatial entanglement for the test systems.Comment: 12 pages and 5 figures

    Confirming the thermal Comptonization model for black hole X-ray emission in the low-hard state

    Full text link
    Hard X-ray spectra of black hole binaries in the low/hard state are well modeled by thermal Comptonization of soft seed photons by a corona-type region with kTkT\thinspace∼50\sim 50{\thinspace}keV and optical depth around 1. Previous spectral studies of 1E{\thinspace}1740.7−-2942, including both the soft and the hard X-ray bands, were always limited by gaps in the spectra or by a combination of observations with imaging and non-imaging instruments. In this study, we have used three rare nearly-simultaneous observations of 1E{\thinspace}1740.7−-1942 by both XMM-Newton and INTEGRAL satellites to combine spectra from four different imaging instruments with no data gaps, and we successfully applied the Comptonization scenario to explain the broadband X-ray spectra of this source in the low/hard state. For two of the three observations, our analysis also shows that, models including Compton reflection can adequately fit the data, in agreement with previous reports. We show that the observations can also be modeled by a more detailed Comptonization scheme. Furthermore, we find the presence of an iron K-edge absorption feature in one occasion, which confirms what had been previously observed by Suzaku. Our broadband analysis of this limited sample shows a rich spectral variability in 1E{\thinspace}1740.7−-2942 at the low/hard state, and we address the possible causes of these variations. More simultaneous soft/hard X-ray observations of this system and other black-hole binaries would be very helpful in constraining the Comptonization scenario and shedding more light on the physics of these systems.Comment: 6 pages, two figures, accepted for publication in A&

    Quantum test of the equivalence principle for atoms in superpositions of internal energy eigenstates

    Full text link
    The Einstein Equivalence Principle (EEP) has a central role in the understanding of gravity and space-time. In its weak form, or Weak Equivalence Principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms. A Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eotvos ratio of atoms in two hyperfine levels with relative uncertainty in the low 10−910^{-9}, improving previous results by almost two orders of magnitude.Comment: Accepted for publication in Nature Communicatio
    • …
    corecore